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‖ Dipartimento di Fisica dell’Università di Pisa and INFN, I-56127 Pisa, Italy

Received 20 March 2000, in final form 13 September 2000

Abstract. We compute the renormalized four-point coupling in the 2D Ising model using transfer-
matrix techniques. We greatly reduce the systematic uncertainties which usually affect this type of
calculation by using the exact knowledge of several terms in the scaling function of the free energy.
Our final result is g4 = 14.697 35(3).

1. Introduction

Important information on the physical properties of a quantum field theory is given by the
renormalized four-point coupling, which is defined in terms of the zero-momentum projection
of the truncated four-point correlator. At the same time, if one is interested in the lattice
discretization of the theory, this renormalized coupling represents one of the most interesting
universal amplitude ratios, being related to the fourth derivative of the free energy.

Recently, in [1], a new interesting approach has been proposed to evaluate this quantity
in the case of integrable QFTs. The idea is that for these theories one has direct access to
the so-called form factors from which the renormalized coupling can be computed. In [1] the
method was tested in the case of the 2D Ising model. The authors found the remarkably precise
estimate

g∗
4 = 14.6975(1) (1)

(see below for the precise definition of g∗
4 ).

The aim of this paper is to test this result by using a completely different method. By
combining transfer-matrix methods and the exact knowledge of several terms in the scaling
function of the free energy of the model we are able to obtain a precision similar to that of [1].
Our result is

g∗
4 = 14.697 35(3) (2)

which is in substantial agreement with the estimate of [1]. Given the subtlety of the calculations
involved in both approaches, our result represents a highly nontrivial test of both methods. In
performing our analysis we employ the same techniques as used in [2] in the study of the 2D
Ising model in a magnetic field.

This paper is organized as follows: we begin in section 2 by collecting some definitions and
elementary results which will be useful in the following. Section 3 is devoted to a discussion
of the transfer-matrix results (and of the techniques that we use to improve the performance
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of the method). In section 4 we obtain the first four terms of the scaling function for the
fourth derivative of the free energy, which enters the estimate of g4, and finally, in section 5,
we discuss the fitting procedure that we used to extract the continuum-limit value from the
data. To help the reader to follow our analysis, we have listed in table 2 the output of our
transfer-matrix analysis.

2. General setting

We are interested in the 2D Ising model defined by the partition function

Z =
∑
σi=±1

eβ
∑

〈n,m〉 σnσm+h
∑

n σn (3)

where the field variable σn takes the values {±1}; n ≡ (n0, n1) labels the sites of a square
lattice of size L0 and L1 in the two directions and 〈n,m〉 denotes nearest-neighbour sites on
the lattice. In our calculations with the transfer-matrix method we shall treat the two directions
asymmetrically. We shall denote by n0 the ‘time’ coordinate and by n1 the ‘space’ one. The
number of sites of the lattice will be denoted by N ≡ L0L1. The critical value of β is

β = βc = 1
2 log (

√
2 + 1) = 0.440 6868 . . . .

In the following we shall be interested in the high-temperature phase of the model in which
the Z2 symmetry is unbroken, i.e. in the region β < βc. It is useful to introduce the reduced
temperature t defined as

t ≡ βc − β

βc

. (4)

As usual, we introduce the free-energy density F(t, h) and the magnetization per site M(t, h)

defined as

F(t, h) ≡ 1

N
log(Z(t, h)) M(t, h) ≡ ∂F (t, h)

∂h
. (5)

The standard definition of the four-point zero-momentum renormalized coupling constant g4

is

g4(t) = − F (4)

χ2ξ 2
2nd

(6)

whereχ andF (4) are the second- and fourth-order derivatives of the free-energy densityF(h, t)

at h = 0:

χ(t) = ∂2F(t, h)

(∂h)2

∣∣∣∣
h=0

F (4)(t) = ∂4F(t, h)

(∂h)4

∣∣∣∣
h=0

(7)

and ξ2nd denotes the second-moment correlation length. The second-moment correlation length
is defined by

ξ 2
2nd = µ2

2dµ0
(8)

where d is the dimension (here d = 2) and

µi = lim
L1→∞

lim
L0→∞

1

N

∑
m,n

(m − n)i〈σmσn〉c. (9)

The connected part of the correlation function is given by

〈σmσn〉c = 〈σmσn〉 − 〈σm〉〈σn〉. (10)
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In particular, we are interested in the continuum-limit value g∗
4 defined as

g∗
4 = lim

t→0
g4(t). (11)

For t → 0 we have

ξ2nd(t) � Aξ,2ndt
−1 χ(t) � Aχt

−7/4 F (4)(t) � AF(4) t−11/2 (12)

from which it follows

g∗
4 = − AF(4)

A2
χA

2
ξ,2nd

. (13)

The amplitude Aχ is known exactly (see e.g. [3]): Aχ = 0.962 581 7322 . . . . The amplitude
Aξ,2nd can also be computed exactly. Indeed, consider the exponential correlation length
ξ (inverse mass gap). For t → 0, it behaves as [3] Aξ t

−1, with Aξ = 1/(4βc) =
0.567 296 328 55, . . . . Using then [4] Aξ/Aξ,2nd = 1.000 402 074, . . . , we obtain finally
Aξ,2nd = 0.567 068 3251 . . . .

Our goal in the remaining part of this paper is to give a numerical estimate of AF(4) .

3. Transfer-matrix results

We may have direct numerical access to F (4) by looking at the h dependence of the
magnetization at fixed t . Expanding as follows:

h = b1M + b3M
3 · · · (14)

we immediately see that

b1 = 1/χ b3 = −F (4)

6χ4
(15)

so that

F (4) = −6b3/b
4
1. (16)

3.1. The transfer-matrix technique

As a first step we computed the magnetization M of a system with L0 = ∞ and finite L1. The
magnetization of this system is given by

M = vT0 M̃v0 (17)

where v0 is the eigenvector of the transfer matrix with the largest eigenvalue and M̃ is a
diagonal matrix with M̃ii being equal to the magnetization of the time-slice configuration i.
For a detailed discussion of the transfer-matrix method see, for example, [5].

We computed v0 using the most trivial iterative method,

vn+1
0 = T vn0

|T vn0 | (18)

starting from a vector with all entries being equal.
An important ingredient in the calculation is the fact that the transfer matrix can be written

as the product of sparse matrices (see e.g. [6]). This allows us to reach L1 = 24 on a
workstation. The major limitation is the memory requirement. We have to store two vectors of
size 2L1 . Since we performed our calculation in double precision, this means that 268 MB are
needed. Slightly larger L1 could be reached by using a super-computer with larger memory
space.

For the parameters β and h that we studied, n � 200 was sufficient to converge within
double-precision accuracy.
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3.2. The equation of state

In order to obtain high-precision estimates of F (4) it turns out to be important to consider the
external field h as a function of the magnetization rather than the opposite. The advantage of
the series (14) is that the coefficients—at least those we can compute—are all positive, and,
therefore, truncation errors are less severe than in the case of m(h).

There is no sharp optimum in the truncation order. After a few numerical experiments we
decided to keep in equation (14) the terms up to b15M

15:

h(M) = b1M + b3M
3 + · · · + b15M

15. (19)

In order to compute the coefficients b1, b3, . . . , b15 we solved the system of linear equations
that results from inserting eight numerically calculated values of the magnetization M(h1),
M(h2), . . . ,M(h8) into the truncated equation of state (19). Here we have chosen hj = jh1.

The errors introduced by the truncation of the series decrease as h1 decreases, while the
errors from numerical rounding increase as h1 decreases. Therefore, we varied h1 to find the
optimal choice. For a given value of β we performed this search only for one lattice size L1.
(Typically L1 = 18.) From the variation of the result with h1 we can infer the precision of our
estimates of bi . For example, for β = 0.37 we obtain b1 with 14 significant digits and b3 with
12 significant digits.

3.3. Extrapolation to the thermodynamic limit

From the transfer-matrix formalism it follows that for periodic boundary conditions andβ �= βc

the free energy density approaches its thermodynamic limit value exponentially in L1. Hence,
also derivatives of the free energy density with respect to h and linear combinations of them
should converge exponentially in L1 to their thermodynamic limit value. Therefore, in the
simplest case, one would extrapolate with an ansatz

b(L1) = b(∞) + c exp(−xL1) (20)

where b(L1) is the quantity at the given lattice size L1 and b(∞) the thermodynamic limit of
the quantity. In order to obtain numerical estimates for b(∞), c and x we have inserted the
numerical result of b for the three lattice sizes L1, L1 − 1 and L1 − 2 into equation (20). It
turns out that, using this simple extrapolation, still a dependence of the result for b(∞) on L1 is
visible. This indicates that, with our numerical precision, subleading exponential corrections
have to be taken into account. For this purpose we have iterated the extrapolation discussed
above.

The iteration starts with b(0)(L1), which are the quantities b that have been computed by
the transfer matrix for the lattice size L1. A step of the iteration is given by solving the system
of equations

b(i)(L1 − 2) = c exp(−x(L1 − 2)) + b(i+1)(L1)

b(i)(L1 − 1) = c exp(−x(L1 − 1)) + b(i+1)(L1)

b(i)(L1) = c exp(−xL1) + b(i+1)(L1)

(21)

with respect to b(i+1)(L1), c and x. In table 1 we give as an example the extrapolation of b3 at
β = 0.37. In the second column we give the results obtained for the given L1. The stability
of the extrapolation with varying L1 increases up to the fourth iteration. Further iterations
become numerically unstable.

As the final result we took b3 = 0.048 378 02(3) from the fourth iteration. The error was
estimated from the variation of the results with L1. As a consistency check, we also extracted
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Table 1. Extrapolation of b3 to the thermodynamic limit for β = 0.37. Iterative procedure. The
numbers in the top row give the extrapolation level. For discussion see the text.

L1 0 1 2 3 4

13 0.045 905 720 4193
14 0.046 345 644 7150
15 0.046 726 298 2921 0.049 170 965
16 0.047 048 383 9889 0.048 819 648
17 0.047 316 223 9288 0.048 638 691 0.048 446 477
18 0.047 535 888 0370 0.048 537 476 0.048 409 004
19 0.047 714 016 4478 0.048 477 931 0.048 392 846 0.048 380 598
20 0.047 857 116 2217 0.048 441 711 0.048 385 463 0.048 379 249
21 0.047 971 175 5247 0.048 419 155 0.048 381 922 0.048 378 658 0.048 378 196
22 0.048 061 483 8402 0.048 404 863 0.048 380 148 0.048 378 366 0.048 378 082
23 0.048 132 580 4063 0.048 395 686 0.048 379 222 0.048 378 214 0.048 378 046
24 0.048 188 277 8282 0.048 389 731 0.048 378 721 0.048 378 128 0.048 378 019

Table 2. Extrapolation of aF4 .

β −F (4)t11/2 −F (4)u
11/2
t

(uh/h)4
+bF4 t

2.75 ext. t3.75 ext. t4

0.200 3.211 114 982 92(2) 4.202 506 4.358 692
0.250 3.472 139 446 6(1) 4.286 829 4.369 154 4.383 609 4.382 846
0.280 3.622 540 034 6(6) 4.321 965 4.373 381 4.381 365 4.380 954
0.300 3.720 514 859 (3) 4.339 751 4.375 424 4.380 395 4.380 141
0.310 3.768 883 189 (7) 4.347 109 4.376 235 4.380 086 4.379 911
0.320 3.816 873 86(2) 4.353 517 4.376 917 4.379 774 4.379 635
0.330 3.864 515 69(5) 4.359 033 4.377 479 4.379 545 4.379 438
0.340 3.911 839 46(6) 4.363 716 4.377 934 4.379 382 4.379 302
0.350 3.958 878 0(3) 4.367 629 4.378 292 4.379 270 4.379 213
0.355 3.982 301 5(7) 4.369 315 4.378 439 4.379 239 4.379 196
0.360 4.005 666 7(8) 4.370 833 4.378 566 4.379 203 4.379 168
0.365 4.028 978 (1) 4.372 189 4.378 674 4.379 174 4.379 146
0.370 4.052 240 (2) 4.373 391 4.378 765 4.379 148 4.379 126

the thermodynamic limit by fitting with multi-exponential ansätze. We found consistent results.
The relative accuracy of b1 in the thermodynamic limit was in general better than that of b3.

In the second column of table 2 we give our final results for −F (4)t11/2 at the β values
that we have studied. For a discussion of the following columns see section 5.

4. Scaling function for F (4)

In this section we shall study the asymptotic behaviour of F (4)(t) for t → 0 following [8].
With respect to [8], we have added the contributions due to the irrelevant operators. Here, we
shall use the knowledge of the operator content of the theory at the critical point which can be
obtained by using the methods of 2D conformal field theories.

General renormalization-group (RG) arguments indicate that the free energy of the model
can be written as

F(t, h) = Fb(t, h) + |ut |d/yt fsing

(
uh

|ut |yh/yt ,
{

uj

|ut |yj /yt
})



8176 M Caselle et al

+|ut |d/yt log |ut |f̃sing

(
uh

|ut |yh/yt ,
{

uj

|ut |yj /yt
})

. (22)

Here Fb(t, h) is a regular function of t and h2, the so-called bulk contribution, ut , uh and {uj }
are the nonlinear scaling fields associated respectively with the temperature, the magnetic field
and the irrelevant operators and yt , yh and {yj } are the corresponding dimensions. For the
Ising model yt = 1 and yh = 15/8. Notice the presence of the logarithmic term, that is related
to a ‘resonance’ between the thermal and the identity operator†. The scaling fields are analytic
functions of t and h that respect the Z2 parity of t and h. Let us write the Taylor expansion
for uh and ut , keeping only those terms that are needed for our analysis (we use the notations
of [8]):

uh = h[1 + cht + dht
2 + ehh

2 + fht
3 + O(t4, th2)] (23)

ut = t + bth
2 + ct t

2 + dt t
3 + et th

2 + gth
4 + ft t

4 + O(t5, t2h2). (24)

Let us first discuss the contributions of the irrelevant operators. In generic models their
dimensions are usually unknown. In the present case instead, we may identify the irrelevant
operators with the secondary fields obtained from the exact solution of the model at the critical
point and use the corresponding RG exponents as input of our analysis. We shall discuss this
issue in full detail in a forthcoming publication; let us only summarize here the main results of
this analysis. It turns out that, discarding corrections of order O(t5), we have only two possible
contributions.

• The first one is due to terms T T̄ , T 2 and T̄ 2 (where T denotes the energy–momentum
tensor). These terms would give a correction proportional to t2 in the scaling function.

• The second contribution is due to the L−3L̄−3I field from the identity family and to L−4ε,
L̄−4ε from the energy family (where the L−is are the generators of the Virasoro algebra).
These terms give a correction proportional to t4 in the scaling function.

However, it turns out (see for instance the remarks of [2,8–10]) that in the infinite-volume free
energy of the 2D Ising model the T T̄ , T 2 and T̄ 2 terms are actually absent‡. Thus, from the
above analysis we see that the first correction due to the irrelevant fields appears only at order
t4. Therefore, since uj/|ut |yj /yt vanishes for t → 0, we can expand

fsing(x, {zj }) = Y+(x) + u0(t, h)u
4
t X+(x) + O(u5

t ) (25)

whereu0(t, h) is an analytic function of t andh, andY+ andX+ are appropriate scaling functions.
The same expansion holds for f̃sing with different functions Ỹ+ and X̃+. Additional constraints
can be obtained using the exactly known results for the free energy, the magnetization and
the susceptibility in zero field. Since all numerical data indicate that all zero-momentum
correlation functions diverge as a power of t without logarithms for t → 0, we assume as
in [8] that Ỹ+(x) is constant, i.e. Ỹ+(x) = Ỹ0. The exact results for the free energy and the
magnetization then give [7]

ch = βc√
2

dh = 23β2
c

16
fh = 191β3

c

48
√

2
(26)

ct = βc√
2

dt = 7β2
c

6
ft = 17β3

c

6
√

2
(27)

† In principle, logarithmic terms may also arise from additional resonances due to the fact that yj are integers or differ
by integers from yh. They will not be considered here since these contributions either are subleading with respect to
those we are interested in or have a form that is already included.
‡ This conjecture is verified by the free energy and by the susceptibility at h = 0 [10] and by the free energy
F(0, h) [2]. Note that this is expected to be true only in the thermodynamic limit. In the finite-size scaling limit
corrections that vanish like L−2

1 are indeed observed [11]. It is also not true for other observables, for instance, for
the correlation length ξ .
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where we have adapted the numbers of [7] to our normalizations, and Ỹ0 = −4β2
c /π . By

making use of the expansion of the susceptibility, we obtain further

Y (2)
+ (0) = Aχ bt = −D0π

16β2
c

(28)

where D0 is the coefficient of the contribution proportional to t log |t | in the susceptibility.
Numerically D0 = 0.040 325 50, . . . , so bt = −0.040 7708, . . . . Nickel [10] has also
conjectured, on the basis of the numerical analysis of the high-temperature series of the
susceptibility, that et = btβc

√
2.

Using the results presented above, and taking four derivatives of the free energy, we obtain

F (4) = t−11/2(aF4(t) + t4ãF4(t) log |t |) + t−11/4(bF4(t) + t4b̃F4(t) log |t |)
+cF4(t) + c̃F4(t) log |t | (29)

where aF4(t), bF4(t), cF4(t), ãF4(t), b̃F4(t) and c̃F4(t) are analytic functions. Using
equations (26) and (27), we can compute the first terms in the Taylor expansion of aF4(t).
By direct evaluation we find

aF4(t) = Y (4)
+ (0)

(1 + cht + dht
2 + fht

3)4

(1 + ct t + dt t2 + ft t3)11/2
+ O(t4)

= Y (4)
+ (0)

(
1 − 3βc

2
√

2
t +

13β2
c

48
t2 +

29β3
c

32
√

2
t3

)
+ O(t4). (30)

From equation (30), we immediately identify

Y (4)
+ (0) = AF(4) . (31)

Analogously, a direct calculation shows that

bF4(0) = −21btY
(2)
+ (0) = 0.824 1504 . . . . (32)

The contributions proportional to cF4(t) and c̃F4(t) give corrections of order t11/2, which will
be neglected in the following.

Putting together the various terms, we end up with the following expression for the scaling
function:

F (4)t11/2 = AF(4) (1 + p1t + p2t
2 + p3t

3)

+p4t
11/4 + p5t

15/4 + p6t
4 + p̃6t

4 log |t | + p7t
19/4 + O(t5) (33)

where

p1 = − 3βc

2
√

2
= −0.467 418 93 . . . (34)

p2 = 13β2
c

48
= 0.052 597 147 . . . (35)

p3 = 29β3
c

32
√

2
= 0.054 843 243 . . . (36)

p4 = −21btY
(2)
+ (0) = 0.824 1504 . . . (37)

and p5, p6, p̃6, p7 and AF(4) are undetermined constants, which we shall try to fix in the next
section.

5. Analysis of the data

The aim of this section is to obtain a numerical estimate for AF(4) by fitting the data reported
in table 2 with the scaling function (33). The major problem in doing this is to estimate the
systematic errors involved in the truncation of the scaling function. To this end we performed
two different types of analysis. Let us see in detail the procedure that we followed.
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5.1. First level of analysis

We first performed a rather naive analysis of the data. In table 2 we include step by step the
information that we have gained in the previous section. In the third column of table 2 we have

multiplied −F (4) by u
11/2
t

(uh/h)4 , where uh and ut are given by equations (23) and (24). We see that
the variation from β = 0.30 to 0.37 of the numbers in column three is reduced by a factor of
about ten compared with column two. In column four we add bF4(0)t11/4 to the numbers of
column three. Again we see that the variation of the numbers with β is drastically reduced in
column four compared with column three.

Since we do not know the coefficients of higher-order corrections exactly we have to
extract them from the data. In the last two columns of table 2 we have extrapolated linearly
in tx , with x = 3.75 in column 5 and x = 4 in column 6. For the extrapolation we used
neighbouring β-values (e.g. the value quoted for β = 0.37 is obtained from the extrapolation
of the data for β = 0.365 and β = 0.37).

We see that the result of the extrapolation does not vary very much when the exponent is
changed from 15/4 to 4. Also the numbers given in column 5 and 6 are much more stable than
those of column 4.

From this naive analysis we conclude that aF4(0) = 4.3791(1), where the error bar is
roughly estimated from an extrapolation of column 5 with t4.

In the next section we shall try to include the higher-order corrections in a more
sophisticated fitting procedure.

5.2. Second level of analysis

We made three types of fit.

(f1) In the first we kept AF(4) , p5 and p6 as free parameters.
(f2) In the second we kept AF(4) , p5, p6 and p7 as free parameters.
(f3) In the third we kept AF(4) , p5, p6 and p̃6 as free parameters.

These are the only choices allowed by the data. If we neglect also p6 we can never obtain
an acceptable confidence level (in fact we know that p6 is certainly different from zero and our
data are too precise to allow such an approximation). If we add further terms, a power of t5

for instance, or try to fit simultaneously p5, p6, p̃6 and p7 it always happens that some of the
amplitudes are smaller than their statistical uncertainty, signalling that our data are not precise
enough to allow for five free parameters.

In order to estimate the systematic errors involved in the estimate of AF(4) we performed
for all the fitting functions several independent fits, trying first to fit all the existing data (those
listed in table 2) and then eliminating the data one by one, starting from the farthest from the
critical point. Among the set of estimates of the critical amplitudes we selected only those
fulfilling the following requirements.

(1) The reduced χ2 of the fit must be of order unity. In order to fix precisely a threshold we
required the fit to have a confidence level larger than 30%.

(2) For all the subleading terms included in the fitting function, the amplitude estimated from
the fit must be larger than the corresponding error, otherwise the term is eliminated from
the fit. It is exactly this constraint which forbids us to take into account fits with more
than four free parameters.

(3) The amplitude of the nth subleading field must be such that when it is multiplied by
the corresponding power of t (for the largest value of t involved in the fit) it gives a
contribution smaller than that of the (n − 1)th subleading term. This is intended to avoid
artificial cancellations between subleading fields.
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Table 3. Fits of type (f1) fulfilling the requirements (1)–(3): in the first column the best fit results
for the critical amplitude (with the error induced by the systematic errors of the input data in
parenthesis); in the second column the best fit value of p5; in the last column the number of degrees
of freedom (i.e. the number of data used in the fit minus the number of free parameters).

AF(4) p5 d.o.f.

−4.379 1092(9) 0.236(3) 4
−4.379 1065(9) 0.220(12) 3
−4.379 095(2) 0.142(18) 2

Table 4. Fits of type (f2) fulfilling the requirements (1)–(3): in the first column the best fit results
for the critical amplitude (with the error induced by the systematic errors of the input data in
parenthesis); in the second column the best fit value of p5; in the last column the number of degrees
of freedom (i.e. the number of data used in the fit minus the number of free parameters).

AF(4) p5 d.o.f.

−4.379 1003(1) 0.0486(7) 7
−4.379 1001(3) 0.047(3) 6
−4.379 1006(8) 0.053(9) 5
−4.379 1022(14) 0.079(22) 4

Table 5. Fits of type (f3) fulfilling the requirements (1)–(3): in the first column the best fit results
for the critical amplitude (with the error induced by the systematic errors of the input data in
parenthesis); in the second column the best fit value of p5; in the last column the number of degrees
of freedom (i.e. the number of data used in the fit minus the number of free parameters).

AF(4) p5 d.o.f.

−4.379 0944(1) −0.692(1) 8
−4.379 0942(3) −0.696(7) 7
−4.379 0961(6) −0.634(17) 6
−4.379 0980(10) −0.56(4) 5
−4.379 1005(16) −0.41(8) 4

Among all the estimates of the critical amplitude AF(4) fulfilling these requirements we
select the smallest and the largest ones as lower and upper bounds.

The results of the fits are reported in tables 3, 4 and 5. We report all the combinations of
input data which fulfill requirements [1–3]. In the tables we also report the best fit value of
p5. All the fits were performed using the double-precision NAG routine GO2DAF.

Looking at the three tables and selecting the lowest and highest values of AF(4) we obtain
the bounds

−4.379 093 � AF(4) � −4.379 110 (38)

from which, using equation (13), we obtain

g∗
4 = 14.697 35(3) (39)

which we consider as our best estimate for g∗
4 . As anticipated in the introduction, this result

is in substantial agreement with the estimate of [1]. Notice, however, that the error quoted in
equation (39) should not be considered as a standard deviation. It rather encodes in a compact
notation the systematic uncertainty of our fitting procedure.

We can compare the estimate (39) with previous numerical determinations. The analysis
of high-temperature expansions gives g∗

4 = 14.694(2) [12] and g∗
4 = 14.693(4) [13] while
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Monte Carlo simulations give g∗
4 = 14.3(1.0) [14] and g∗

4 = 14.69(2) [1]. These results agree
with our estimate (39), which is, however, much more precise.

It is clear from the data (see the second column of tables 3, 4 and 5) that the uncertainty
on AF(4) is mostly due to the fluctuation of p5. If one were to be able to fix exactly also p5,
the precision in the determination of g4 could be significantly enhanced.
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